ACCESSOIRES DE CABLAGE ACCESSOIRES DE MONTAGE COMPOSANTS ELECTRONIQUES ACCOUPLEMENTS UNIVERSELS ACCOUPLEMENTS DE PRÉCISION "SOUFFLEX" CARDANS JOINTS OLDHAM LIMITEURS DE COUPLE TRAVAUX SUR PLAN

WIRING ACCESSORIES MOUNTING ACCESSORIES ELECTRONICS COMPONENTS UNIVERSAL JOINTS "SOUFFLEX" BELLOWS COUPLINGS CARDAN COUPLINGS OLDHAM JOINTS TORQUE LIMITERS QUOTATIONS TO COSTUMERS' DRAWINGS

VERKABELUNGE-ZUBEHÖR MONTAGE-ZUBEHÖR ELEKTRONISCHE BAUTEIL GELENKKUPLUNGEN FALTENBALG-KUPPLUNGEN "SOUFFLEX" KARDAN-KUPPLUNGEN OLDHAM-KUPPLUNGEN EINSTELLBARE RUTSCHKUPPLUNGEN SONDER AUS FÜHRENGEN NACH KUNDENWUNSCH

CHOISISSEZ VOTRE FORMULE DE COMMANDE

PAR TELEPHONE

ZA Les Lavours 01100 Martignat SIRET : 434 994 786 00029 2 : 04.74.81.14.69 (a) : contact@alpha-industries.fr

ALPHA Industries

PAR TELECOPIE

ALPHA Industries

ZA Les Lavours 01100 Martignat SIRET : 434 994 786 00029 2 : 04.74.81.14.69 @ : contact@alpha-industries.fr

PAR COURRIER

ALPHA Industries

ZA Les Lavours 01100 Martignat SIRET : 434 994 786 00029 **2** : 04.74.81.14.69 @ : contact@alpha-industries.fr

Table des matières

la fixation

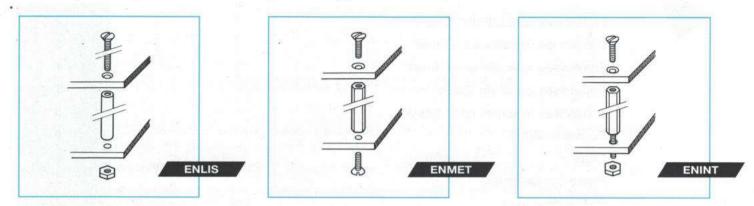
	CARLON AND AND A REAL PROPERTY OF
Entretoises lisses "Enlis" "Exalis"	2
Entretoises métalliques "Enmet"	3
Entretoises intermédiaires "Enint"	4
Entretoises isolantes "Eniso"	5
Entretoises isolantes ryton "Enryt"	5
Ecrous à sertir	6
Clips	6
Passages étanches	7
Passages d'axes	7
Fixations pour potentiomètres	8

les accouplements

	Contraction of the second s
Accouplements "Soufflex" : généralités	. 9-10
Accouplements "Soufflex" Nickel	11
Accouplements "Soufflex" Inox	12
Accouplements "Soufflex" Bronze - Beryllium	13
Accouplements miniatures "Torflex"	15
Accouplements en polyuréthane "Tanflex"	16
Accouplements en acier à ressort "Sorflex"	17
Flectors et accouplements miniatures	18
Joints universels (cardans)	19-21
Limiteurs de couple	22
Joints oldham - Joints hybrides	23
Cardans de précision	24

la connectique

Bornes et passages (ptfe)	25
Picots pour circuits imprimés	26
Picots pour montages divers	26
Relais tourniquets	27-28
Traversées (ptfe - petp)	28
Traversées femelles	29
Cavaliers court-circuit - Cavaliers isolés	29

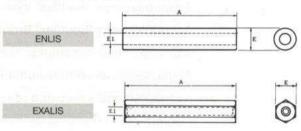

les travaux sur plans

Exécutions spéciales

30-31

enel16.01 295

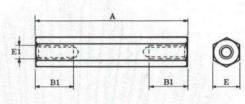
Des composants qui facilitent le montage de vos appareils mécaniques



ENtretoises LISses "ENLIS" "EXALIS"

Enlis-Exalis : entretoises lisses pour passage d'axe.

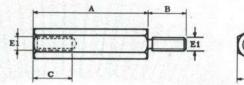
POUR TOUTE AUTRE EXÉCUTION SUR PLAN, VEUILLEZ NOUS CONSULTER.



Matière	Références	E	El	A = longueurs disponibles sur stock
Acier zingué bichromaté	ENLIS 1	4	3,2	sur demande
Laiton nickelé	ENLIS 2	6	3,2	1-2-3-4-5-6-7-8-10-12-15-18-20-25-30-35-40-45-50-55-60
Laton monore	ENLIS 3	8	4,2	1-2-3-4-5-6-8-10-12-15-18-20-25-30-35-40-45-50-55-60
Inox 18/10 Amagnétique	ENLIS 5	6	3,2	5-6-7-8-10
nox for to Amagneaque	ENLIS 6	8	5-8-10-12-15-18-20	
	ENLIS 4	6	3,2	1-2-3-4-5-8-10-12-15-18-20
Nylon décolletage	ENLIS 7	4	2,2	1-2-3-4-5-8-10-12-15-18-20
Nyion deconerage	ENLIS 8	8	4,2	1-2-3-4-5-8-10-12-15-18-20
	ENLIS 9	10	5,3	1-2-3-4-5-8-10-12-15-18-20
	ENLIS 44	6	3,2	1-2-3-4-5-8-10-12-15-18-20
Polyamide moulage	ENLIS 47	4	2,2	1-2-3-4-5-8-10-12-15-18-20
roiyamide modiage	ENLIS 48	8	4,2	1-2-3-4-5-8-10-12-15-18-20
	ENLIS 49	10	5,3	1-2-3-4-5-8-10-12-15-18-20
	EXALIS 2	5	3,2	5-10
Laiton nickelé	EXALIS 3	7	4,2	5-10
	EXALIS 22	5,5	3,2	sur demande
	EXALIS 4	5	3,2	5-10
Acier zingué bichromaté	EXALIS 5	7	4,2	5-10
	EXALIS 24	5,5	3,2	sur demande

ENtretoises METalliques "ENMET"

Enmet : entretoise hexagonale taraudée aux deux extrémités. Matière : laiton nickelé, acier zingué bichromaté, dural alodiné, inox.


POUR TOUTE AUTRE EXÉCUTION SUR PLAN, VEUILLEZ NOUS CONSULTER.

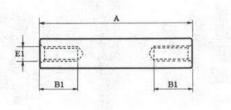
Matière	M2 X 0,40	M2,5 X 0,45	M3 X 0,50	M4 X 0,70	M5 X 0,80	M6 X 1,00
Laiton nickelé	ENMET 1	ENMET 19	ENMET 2 - 15	ENMET 4	ENMET 20	A STUDY RUG
Acier zingué bichromaté			ENMET 6 - 16	ENMET 7	ENMET 8	ENMET 17
Dural alodiné			ENMET 9	ENMET 10	ENMET 11	
Inox 8/10	The second	in solutions!	ENMET 12	ENMET 13		Capital States

State Market	12 17 19 18	And Antonio	12/08/9	and the second state	1 33045	A TELESCONDUCTION LOOP
					A = longueurs disponible	s sur stock
Matière	Références	E	E1	B1 = A	B1 = 7 pour A = 15 B1 = 9 pour A = 18 B1 = 10 pour A = 20	B1 = 10
	ENMET 1	3,5	M2 X 0,40	5-8-10-12	15-18-20	25-30
	ENMET 2	5	M3 X 0,50	5-8-10-12	15-18-20	25-30-35-40-45-50-55-60
	ENMET 4	7	M4 X 0,70	5-8-10-12	15-18-20	25-30-35-40-45-50-55-60
Laiton nickelé	ENMET 15	5,5	M3 X 0,50	5-8-10-12	15-18-20	25-30-35-40-45-50-55-60
	ENMET 19	5	M2,5 X 0,45	5-8-10-12	15-18-20	25-30-35-40-45-50-55-60
	ENMET 20	8	M5 X 0,80	5-8-10-12	15-18-20	25-30-35-40-45-50-55-60-70
	ENMET 6	5	M3 X 0,50	5-8-10-12	15-18-20	25-30-35-40-45-50-55-60
	ENMET 7	7	M4 X 0,70	5-8-10-12	15-18-20	25-30-35-40-45-50-55-60
Acier zingué bichromaté	ENMET 8	8	M5 X 0,80	5-8-10-12	15-18-20	25-30-35-40-45-50-55-60
	ENMET 16	5,5	M3 X 0,50	5-8-10-12	15-18-20	25-30-35-40-45-50-55-60
	ENMET 17	10	M6 X 1,00	8-10-12	15-18-20	25-30-35-40-45-50-55-60-70
	ENMET 9	5	M3 X 0,50	8-10-12	15-18-20	25-30-35-40-50-60
Dural alodiné	ENMET 10	7	M4 X 0,70	8-10-12	15-18-20	25-30-35-40-50-60
	ENMET 11	8	M5 X 0,80	8-10-12	15-18-20	25-30-35-40-50-60
Inox 18/10 amagnétique	ENMET 12	5,5	M3 X 0,50	5-8-10-12	15-18-20	25-30-35-40-50-60
mox for to amagnetique	ENMET 13	7	M4 X 0,70	8-10-12	15-18-20	25-30-35-40-50-60

ENtretoises INTermédiaires "ENINT"

Enint : entretoise six pans taraudée à une extrémité, filetée à l'autre. Matière : laiton nickelé, acier zingué bichromaté, dural alodiné, inox.

POUR TOUTE AUTRE EXÉCUTION SUR PLAN, VEUILLEZ NOUS CONSULTER.


ENINT	A	5-8	10	12-20	25-60
1-3-6-7 9-10-12-13	B	8	8	8	10
16-17-18-21	C	3	6	8	10
	A	8	10-12	15-60	1
ENINT 8-11-20	B	10	10	10	
8-11-20	C	4	6	10	

Matière	M2,5 X 0,45	M3 X 0,50	M4 X 0,70	M5 X 0,80	M6 X 1,00
Laiton nickelé	ENINT 21	ENINT 1-17	ENINT 3	ENINT 20	
Acier zingué bichromaté		ENINT 6-18	ENINT 7	ENINT 8	ENINT 16
Dural alodiné		ENINT 9	ENINT 10	ENINT 11	
Inox 18/10		ENINT 12	ENINT 13	Constantine State	

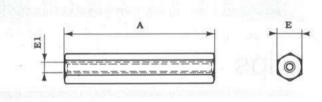
Matière	Références	E	El	A = longueurs disponibles sur stock
	ENINT 1	5	M3 X 0,50	5-8-10-12-15-18-20-25-30-35-40-45-50-55-60
	ENINT 3	7	M4 X 0,70	5-8-10-12-15-18-20-25-30-35-40-45-50-55-60
Laiton nickelé	ENINT 17	5,5	M3 X 0,50	5-8-10-12-15-18-20-25-30-35-40-45-50-55-60
	ENINT 20	8	M5 X 0,80	5-8-10-12-15-18-20-25-30-35-40-45-50-55-60-70
	ENINT 21	5	M2,5 X 0,45	5-8-10-12-15-18-20
	ENINT 6	5	M3 X 0,50	5-8-10-12-15-18-20-25-30-35-40-45-50-55-60-70
Acier zingué bichromaté	ENINT 7	7	M4 X 0,70	8-10-12-15-18-20-25-30-35-40-45-50-55-60
	ENINT 8	8	M5 X 0,80	8-10-12-15-18-20-25-30-35-40-45-50-55-60
	ENINT 16	10	M6 X 1,00	8-10-12-15-18-20-25-30-35-40-45-50-55-60-70
	ENINT 18	5,5	M3 X 0,50	5-8-10-12-15-18-20-25-30-35-40-45-50-55-60
	ENINT 9	5	M3 X 0,50	8-10-12-15-18-20-25-30-35-40-50-60
Dural alodiné	ENINT 10	7	M4 X 0,70	8-10-12-15-18-20-25-30-35-40-50-60
	ENINT 11	8	M5 X 0,80	8-10-12-15-18-20-25-30-35-40-50-60
	ENINT 12	5,5	M3 X 0,50	5-8-10-12-15-18-20-25-30-35-40-50-60
Inox 18/10 amagnétique	ENINT 13	7	M4 X 0,70	8-10-12-15-18-20-25-30-35-40-50-60

ENtretoises ISOlantes "ENISO"

Eniso : entretoise isolante, taraudée aux deux extrémités. Matière : nylon (PA 6,6)

POUR TOUTE AUTRE EXÉCUTION SUR PLAN, VEUILLEZ NOUS CONSULTER.

		A specific		A = Longueurs disponibles sur stock					
Matière	Références E E1 B1 = A B1 = 7 pour A = 15 B1 = 9 pour A = 18 B1 = 10 pour A = 20				B1 = 10*				
The second s	ENISO 1	6	M3 x 0,50	5-8-10-12	15-18-20	25-30-35-40-45-50-55-60			
Nylon	ENISO 3	ENISO 3 8 M4 x 0,50		5-8-10-12	15-18-20	25-30-35-40-45-50-55-60			


ENtretoises isolantes RYTon "ENRYT"

Entretoises de la série "ENRYT" (P.P.S. RYTON)*.

Température d'utilisation : - 40 + 250 °C

Le poly-sulfure de phénylène RYTON est un polymère thermoplastique nouveau, mis au point par Phillips Petroleum Company (U.S.A.) et destiné à des applications techniques. Il se caractérise par une grande stabilité à la chaleur et une remarquable résistance aux agents chimiques. On ne connaît actuellement aucun solvant susceptible de le dissoudre en-dessous de 200 °C.

POUR TOUTES AUTRES DIMENSIONS < 25 VEUILLEZ NOUS CONSULTER.

Matière	Références	E	E1	A = Longueurs disponisbles sur stock
Ryton*	ENRYT 53	5	M3 x 0,50	10-15-20-25
Hyton	ENRYT 74	7	M4 x 0,70	10-15-20-25

* RYTON Trademark of Phillips Petroleum

Ecrous à sertir

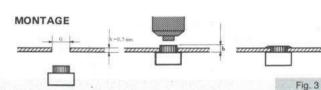


Fig. 1

Les écrous à sertir facilitent le montage

d'appareils électriques ou électroniques.

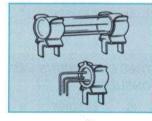
D'une pose simple et aisée, ils ne tournent pas après sertissage grâce à leur crantage.


Matériau : laiton nickelé - acier zingué bichromaté.

La hauteur "h" de l'écrou est déterminée par l'épaisseur de la plaque de montage + 0,5 mm. (fig.1)

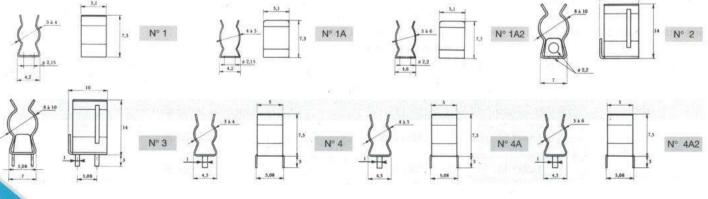
SERIE "SM"

Matériau : laiton nickelé, acier zingué bichromaté, inox. Nos écrous standards sont au pas ISO (autre pas sur demande).


Nous sommes en mesure de livrer les outils de montage. Pour commander ceux-ci, il suffit d'indiquer la référence de l'écrou (outil de pose pour...). (fig.3) Ecrou à sertir autoforant. Inox. (fig. 2)

éf. acier Fig. 1	E	E1	F	B	B1	G	h	A	Réf. laiton Fig. 1	Réf. acier Fig. 2	E	F	B	G	h	A	Réf. laiton Fig. 2	Réf. Ino: Fig. 2
659 660 661 662 667 668 669 670 671	M3 M3 M3 M4 M4 M4 M4 M4 M4	555566666	7 7 7 8 8 8 8 8 8	3,5 3,5 3,5 4,5 4,5 4,5 4,5 4,5	555566666	4444555555	1,5 2,5 3 1,5 2,5 3,5	6,5 7 7,5 8 7,5 8 8,5 9 9,5	687 688 689 690 695 696 697 698 699	725 726	M2 M2 M2,5 M2,5 M2,5 M3 M3 M3 M3	55555666	2,5 2,5 2,5 2,5 2,5 2,5 2,5 3 3 3	3,5 3,5 3,5 4 4 4 4 4 4	1,5 2,5 1,5 2,5 1,5 2,5 1,5 2,5 2,5	4 4,5 5 4,5 5 4,5 5,5	737 738 739 741 742 743 745 746 747	808 809 810 812 813 814 816 817 818
677 678	M5 M5	8 8 8	SL 10	5 5	7	DE 6,2 6,2	1,5	8,5 9	705 706	727 728 729	M4 M4 M4	7 7 7	4 4 4	5 5 5	1,5 2 2,5	5,5 6 6,5	748 749 750	819 820 821
679 680 681	M5 M5 M5	8 8 8	10 10 10 10	5 5 5 5	7 7 7 7	6,2 6,2 6,2 6,2	2,5 3 3,5	9,5 10 10,5	707 708 709	731 732 733	M5 M5 M5	10 10 10	4,5 4,5 4,5	6,2 6,2 6,2 6,2	EMA 1,5 2 2,5	6 6,5 7	752 753 754	823 824 825
ement spéc	ial sur c	lemano	de.					G =	∞ de perçage	734 735	M5 M5	10 10	4,5 4,5	6,2 6,2	3 3,5	7,5 8	755 756	826 827
lins	2										M2,5	6	1,7	4,7	1,7	3,4		646

Fig. 2

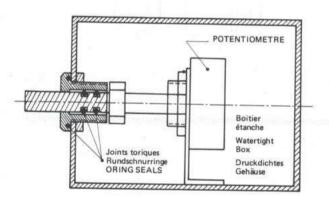

Clips

Les clips servent à la fixation de composants électroniques et permettent d'éviter les ruptures de fils ou de soudure généralement dues aux vibrations.

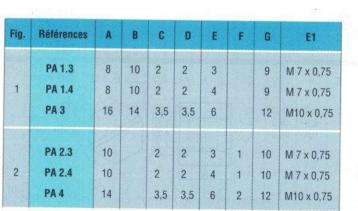
Les clips N° 2 et 3 sont particulièrement destinés à recevoir la collerette du transistor et assurent une parfaite tenue de celui-ci. Les clips Nº 3 et 4 sont destinés à être soudés sur des circuits imprimés.

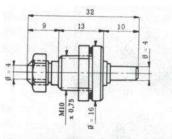
Matériau : cupro-béryllium stabilisé et décapé (dorure ou étamage sur demande).

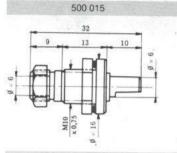
Passages étanches

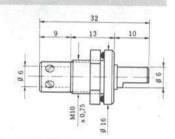


Les passages étanches permettent le réglage de potentiomètres, de condensateurs variables et de commutateurs rotatifs placés dans des boîtiers étanches. Ils sont particulièrement utilisés dans le domaine de la chimie, de la météorologie et de la construction navale.

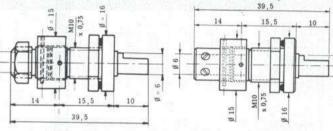

Les passages étanches réf. 500 017 et 500 017B sont pourvus d'un accouplement cardan, qui permet de compenser d'éventuels défauts de montage tant angulaires que latéraux, et isole le composant de l'axe jusqu'à une tension de contournement de 7 kV.


Matériau : acier inoxydable


Etanchéité : en pression environnante de 1 Bar : la pression intérieure peut varier de 0,05 à 6 Bars.



Passages d'axes



500 011 B

500 01

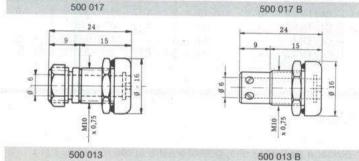
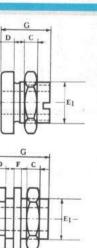
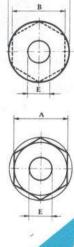




Fig. Fig. 2

Matériau : laiton chromé

NYLON

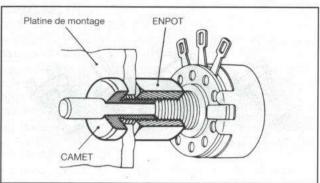
Fixations pour potentiomètres

CAMET ENPOT

Camet : cache en laiton chromé pour passage d'axe.

Enpot : entretoise en laiton nickelé pour fixation d'un potentiomètre.

Fig.	Références	A	B	C	D	E	E1	F	G
1	CA/EN 1 CA/EN 1.3 CA/EN 1.4	8 8 8	10 10 10	10 10 10	2 2 2	3,17 3 4	1/4" - 32 M7 x 0,75 M7 x 0,75		9 9 9
	CA/EN 3 CA/EN 3.A	16 16	14 14	14 14	3,5 3,5	6 6,35	M10 x 0,75 3/8" - 32		12 12
	CA / EN 2	10		10	2	3	M6 x 0,75	1	10
	CA / EN 2.3 CA / EN 2.A	10 10		10 10	2	3 3.17	M7 x 0,75 1/4" - 32	1	10
2	CA / EN 2.4	10		10	2	4	M7 x 0.75	1	10
	CA / EN 4	14		14	3,5	6	M10 x 0,75	2	12
1.1	CA / EN 4.A	14		14	3,5	6,35	3/8" - 32	2	12


BLOCAX

Pince de serrage avec écrou en laiton nickelé permettant le blocage de l'arbre d'un potentiomètre après réglage.

Fig.	Références	A	B	C	D	E	E1
	Bx1	14	16	11	3,5	6	M10 x 0,75
	Bx2	14	16	11	3,5	6	M8 x 0,75
1	Bx3	14	16	11	3,5	6,35	3,8" - 32
	Bx4	12	12	8	2	3	M7 x 0,75
15	Bx5	12	12	8	2	4	M7 x 0,75

CAPAX

Capot de protection en laiton nickelé évitant d'atteindre après réglage l'axe d'un potentiomètre.

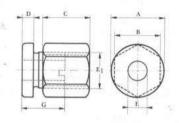


Fig.1

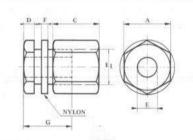


Fig.2

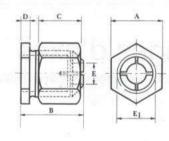


Fig.1

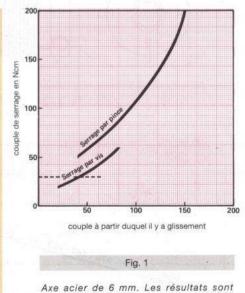
Généralités sur les accouplements

L'accouplement de deux axes qui ne sont pas rigoureusement dans le prolongement l'un de l'autre ou qui forment entre eux un angle plus ou moins important, est un problème qui se pose souvent dans la réalisation mécanique des systèmes électriques ou électroniques.

On trouvera dans les pages suivantes toute une série d'accouplements qui permettent de répondre à tous les besoins qui peuvent se présenter dans les bureaux d'études.

En particulier, les accouplements SOUFFLEX ont des caractéristiques remarquables lorsque le débattement angulaire ou latéral n'est pas très élevé et, dans le cas contraire, la série des joints universels permet de résoudre tous les problèmes lorsque l'angle entre les deux axes est très important.

Pour la plupart des accouplements , nous avons publié les courbes de l'angle de torsion en fonction du couple transmis.


Ce couple est en général très faible et, sauf dans des cas particuliers, l'angle de torsion est pratiquement nul. Toutefois il y a lieu d'observer que ces courbes correspondent à un couple statique.

Dans certains cas, on peut se trouver en présence d'un couple beaucoup plus élevé que celui auquel on s'attendait ; par exemple lorsque le déplacement angulaire est limité dans sa course. C'est ce qui se produit lorsque l'on commande un condensateur variable ou un potentiomètre muni d'une butée et que la manœuvre de celui-ci est confiée à un opérateur.

Pendant la rotation le couple résistant est insignifiant, très inférieur à 1 newton ; mais si l'opérateur tourne brutalement le bouton du potentiomètre jusqu'à la butée, le couple, à ce moment, peut atteindre des valeurs beaucoup plus élevées.

Au cours d'essais statistiques nous avons trouvé couramment, sur la butée, des valeurs de l'ordre de 20 newtons et, exceptionnellement, 60 et 100 newtons.

Il y a donc lieu, dans certains cas, de tenir compte de cet effort supplémentaire imposé à l'accouplement.

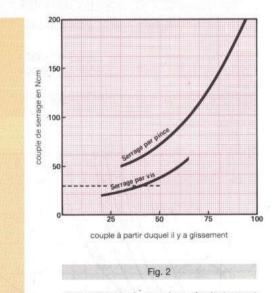
Axé acter de 6 min. Les resultats sour un axé de 6,35 et pour les pinces en acier ou en laiton. Le tracé en pointillé correspond au couple de serage à partir duquél une clé mâle six pans se tord. Les courbes donnent les valeurs moyennes, en fonctions d'écarts statistiques de $\pm 10\%$.

CHOIX DU DISPOSITIF DE SERRAGE

Un autre problème se pose à l'utilisateur, c'est celui du dispositif de fixation de l'accouplement sur les axes qu'il doit relier. Il est évident que la solution la plus sûre consiste à goupiller l'accouplement directement sur les axes. C'est pourquoi, sur certains de nos modèles, un trou de centrage de goupille a été prévu sur les collerettes. Mais cette solution n'est pas toujours facile à appliquer et l'utilisateur peut choisir entre la fixation par vis cuvette avec serrage par clé mâle six pans ou bien au moyen d'une pince.

La fixation au moyen d'une vis cuvette a l'avantage d'être élégante et d'un très faible encombrement. En revanche elle est, toutes choses égales, moins efficace que la fixation par pince.

Nous avons fait un certain nombre de mesures qui se traduisent par les courbes des figures 1 et 2, qui montrent le couple maximal que l'on peut transmettre en fonction du couple de serrage, indépendamment du type d'accouplement utilisé, ce couple limite correspondant à celui qui occasionne un glissement entre l'axe et l'accouplement.


La mesure du couple de serrage sur la clé six pans des vis à cuvette a été faite au moyen d'un mesureur de couple étalonné "Waters".

Le couple de serrage dans le cas du montage à pince a été mesuré au moyen d'une balance dynamométrique, l'un des écrous étant immobilisé mécaniquement.

Les essais concluent nettement en faveur du serrage par pince si l'on a un couple élevé à transmettre, d'autant plus que, dans le cas du blocage par vis cuvette, le couple de serrage est limité par la torsion de la clé six pans mâle. Si, par exemple, on applique l'effort à 40 mm de l'extrémité de la clé, celle-ci commence à se tordre pour un effort de 20 newtons.

En revanche dans le cas du blocage par pince il est facile de développer, pour un opérateur normal, un effort de 200 newtons.

Nous espérons que ces quelques indications permettront à l'utilisateur des accouplements de choisir le mode de fixation qui convient le mieux en fonction du couple maxi à transmettre.

Axe acier de 3 mm. Les résultats sont pratiquement les mêmes pour un axe de 3,17 et pour les pinces en acier ou en laiton. Le tracé en pointillé correspond au couple de serrage à partir duquel une clé mâle six pans se tord. Les courbes donnent les valeurs moyennes, en fonctions d'écarts statistiques de ±10%.

Accouplements "SOUFFLEX"

L'accouplement "SOUFFLEX" est un accouplement à parois minces pourvu de bagues ou de pinces aux deux extrémités permettant la fixation sur les axes.

L'accouplement "SOUFFLEX" a été particulièrement étudié pour compenser les débattements axiaux angulaires et latéraux afférents à tout système mécanique de précision (température d'utilisation – 40 + 150 °C).

MATERIAU

Acier Inoxydable Z08 CNT 18-10 pour les types : 383-393-410-411-440-441-491-493-494-495-496.

Bronze (Cu SN 6) pour les types : 420-421-428-450-451-470-475-480-491

Bronze au Beryllium pour les types : 430-460-490

Nickel électrodéposé pour les types : 310-320-330-335-340-345.

Fig.	Matière	Туре	Page
	Nickel	310 - 320 330 - 340	11
1	Inox	383 - 393 410 - 411 - 495	12
	Bronze	420 - 421 - 428 470 - 475	13
	Beryllium	430	13

Fig.	Matière	Туре	Page
munice .	Inox	440 - 441	12
2	Bronze	450 - 451	13
	Beryllium	460	13

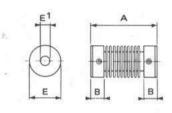
Fig.	Matière	Туре	Page
	Nickel	335 - 345	11
3	Inox	491 - 493 494 - 496	12
	Bronze	490	13

SOUFFLEX marque déposée

460 40 2,30 8 10 410 430 1700 340 - 345 - 470 - 480 - 490 - 491 - 493 - 494 - 495 M 499 20 Angle de torsion 1,30 10 0,50 0 10 20 30 40 50 60 80 100 120 150 200 250 300

FIXATION

1 - Par vis : fig. 1


2 - Par écrou/Bague filetée : fig. 2

3 - Par pince/Bague fendue (vis tangente) : fig. 3

Les courbes et les dessins permettent de choisir le modèle le mieux adapté au but recherché, en fonction du couple à transmettre ou des débattements prévisibles.

Il y a lieu de noter que les "SOUFFLEX" sont des accouplements homocinétiques.

Les essais, effectués dans notre laboratoire, qui ont permis de tracer les courbes ont été confirmés par le laboratoire National d'Essais des A.M., procès verbal 603088.

with expression ne revuent Fig. 1.00 no tash anished enally

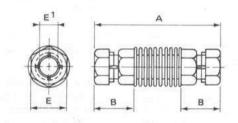
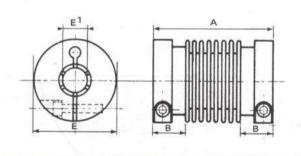
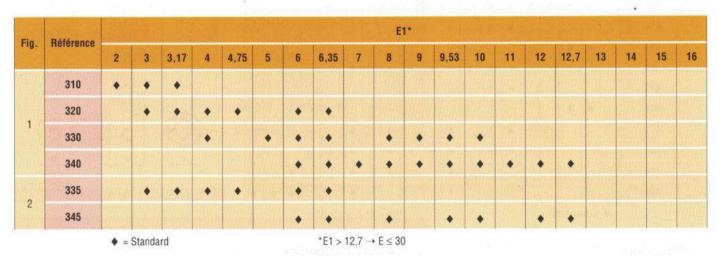


Fig. 2




Fig. 3

Couple transmis exprimé en Nom

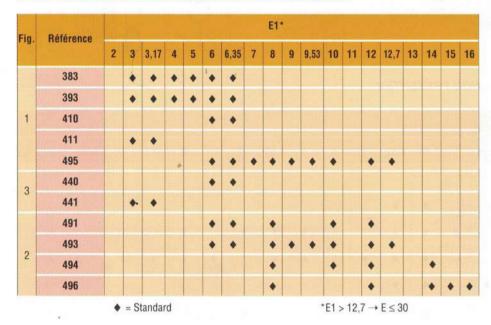
Accouplements "SOUFFLEX" NICKEL

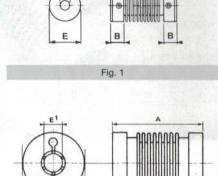
NOUS CONSULTER POUR DIAMETRES NON PRÉSENTÉS

DIMENSIONS

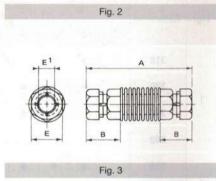
Fig.	Référence	Fixation	A	B	E	
	310	M 2	18	5 - (Inox)	7	
1	320	M 2,5	23	6 - (Inox)	13	
1	330	M 3	31	7 - (Alu)	18	
	340	M 3	33	7 - (Alu)	26	
	335		35	8 - (Alu)	18	
2	345		43	9 - (Alu)	25	

PERFORMANCES


	δ Φ Φ			
Référence	Mouvement AXIAL mm	Débattement ANGULAIRE Degré	Mésalignement LATERAL mm	Couple maximum Ncm
310	2 (± 1)	10°	0,25	4
320	3 (± 1,5)	16°	0,35	15
330	4 (± 2)	14°	0,70	30
340	4 (±2)	8°	0,50	250
335	4 (± 2)	14°	0,70	50
345	4 (± 2)	8°	0,50	250


Fig. 2

Accouplements "SOUFFLEX" INOX

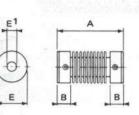


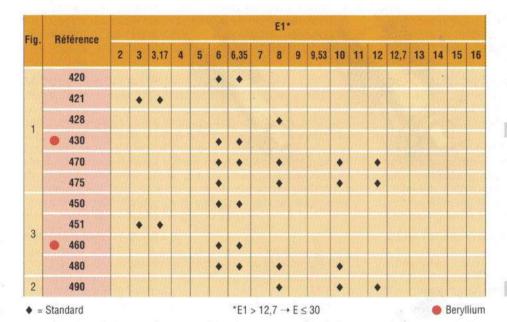
A

DIMENSIONS

1

Fig.	Référence	Fixation	A	B	E	
71	383	M 3	21	6,5 - (Inox)	13	
1	393	M 3	26	6,5 - (Inox)	13	
	410	M 3	24	5,5 - (Inox)	13	
	411	M 2,5	24	5,5 - (Inox)	10	
	495	M 4	38	9,5 - (Inox)	22	
0	440		40	13 - (Inox)	10	
3	441		36	11 - (Inox)	8	
	491		32	8,5 - (Inox)	22	
0	493		32	6,5 - (Inox)	22	
2	494		40,5	13 - (Inox)	25	
	496		44	14,5 - (Inox)	30	


PERFORMANCES


MADAR	δ			MENSION
Référence	Mouvement AXIAL mm	Débattement ANGULAIRE Degré	Mésalignement LATERAL mm	Couple maximum Ncm
383	1,5 mm	7°	0,50 mm	100 Ncm
393	1,5 mm	7°	0,50 mm	100 Ncm
410	1,5 mm	7°	0,50 mm	100 Ncm
411	1 mm	10°	1 mm	100 Ncm
495	1,5 mm	7°	0,50 mm	250 Ncm
440	1,5 mm	7°	0,50 mm	100 Ncm
441	1 mm	10°	1 mm	100 Ncm
491	1,5 mm	7°	0,50 mm	250 Ncm
493	1,5 mm	7°	0,50 mm	250 Ncm
494	1,5 mm	7°	0,50 mm	250 Ncm
496	1,5 mm	7°	0,50 mm	250 Ncm

Accouplements "SOUFFLEX" BRONZE

NOUS CONSULTER POUR DIAMÈTRES NON PRÉSENTÉS

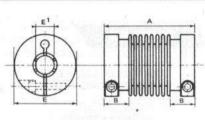
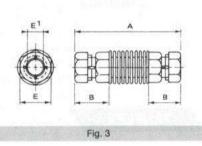



Fig. 2

Fig. 1

DIMENSIONS

Fig.	Référence	Fixation	A	B	E	
	420	M 3	24	5,5 - (CuZn)	13	
	421	M 2,5	24	5,5 - (CuZn)	10	
	428	M 3	26	6,5 - (CuZn)	13	
1	430	M 3	25	5,5 - (CuZn)	13	
	470	M 4	40	9,5 - (CuZn)	23	
	475	M 4	28	9,5 - (CuZn)	23	
	450		39	13 - (CuZn)	10	
0	451		36,5	11 - (CuZn)	8	
3	460	- Hardina	41	13 - (CuZn)	10	
	480	- march	63	24,5 - (CuZn)	25	
2	490		40,5	9 - (CuZn)	25	

PERFORMANCES

(1997) - I		ALCON.		
	δ			
Référence	Mouvement AXIAL mm	Débattement ANGULAIRE Degré	Mésalignement LATERAL mm	Couple maximum Ncm
420	2,5 mm	10°	1 mm	40 Ncm
421	1,5 mm	15°	1,50 mm	30 Ncm
428	2,5 mm	10°	1mm	40 Ncm
430	3,5 mm	20°	2 mm	50 Ncm
470	0,5 mm	5°	0,50 mm	200 Ncm
475	0,5 mm	5°	0,50 mm	80 Ncm
450	2,5 mm	10°	1 mm	40 Ncm
451	1,5 mm	15°	1,50 mm	30 Ncm
460	2,5 mm	20°	2 mm	50 Ncm
480	0,5 mm	5°	0,50 mm	200 Ncm
490	0,5 mm	5°	0,50 mm	200 Ncm

Accoublements "SOUFFICEXEMPROMERCIAN Strain

NICKEL

INOX

BRONZE

BERYLLIUM

TORFLEX

LIMITEUR DE COUPLE + SOUFFLEX NICKEL

TORQUE LIMITER + SOUFFLEX NICKEL

RUTSCHKUPPLUNGEN AUS METAL + SOUFFLEX NICKEL

ACCOUPLEMENT EN POLYURETHANE

POLYURETHANE COUPLING

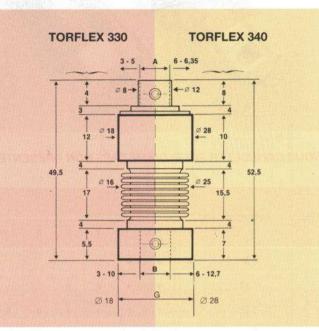
POLYURETHAN KUPPLUNGEN

SORFLEX

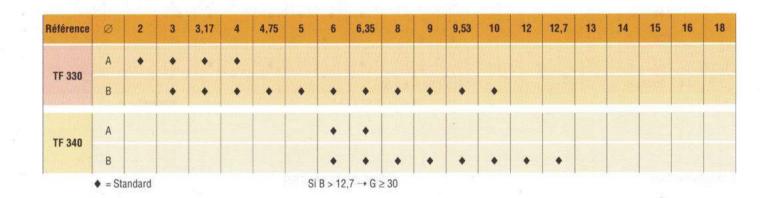
ACCOUPLEMENT EN ACIER A RESSORT

STEEL SPRING

FEDERSTAHLKUPPLUNG



Pour diamètre d'axe de 3 à 20 For shaft diameter from 3 to 20 Für wellendurchmesser von 3 bis 20

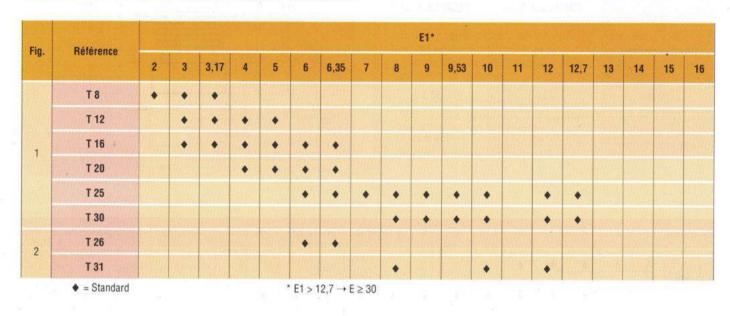

Accouplements miniatures "TORFLEX"

Limiteur de couple associé à un soufflex nickel

	TORFLEX 330	TORFLEX 340
Diamètre extérieur	Ø 18	Ø 28
Longueur	49,5	52,5
Couple maximum (avant déclenchement)	30 Ncm	150 Ncm

PERFORMANCES

Les qualités du SOUFFLEX nickel associé au limiteur de couple réglable de 0 à 150 Ncm, apportent toute sécurité au système dans lequel il est incorporé.


201 I I I I I I I I I I I I I I I I I I I	94 A				
	Référence	Mouvement AXIAL mm	Débattement ANGULAIRE Degré	Mésalignement LATERAL mm	Couple maximum Ncm
	TF 330	4 (±2)	14	0,70	30
	TF 340	4 (±2)	8	0,50	150

Accouplements en polyuréthane "TANFLEX"

Accouplement rigide, sans débattement axial, angulaire, latéral, assure l'isolation électrique.

NOUS CONSULTER POUR DIAMÈTRES NON PRÉSENTÉS

DIMENSIONS

Fig.	Référence	Fixation	A	В	E
	T 8	M 2,5	25	8	10
	T 12	M 3	31	9	14
1	T 16	M 3	34	9	18
	T 20	M 3	39	10	22
	T 25	M 4	42	10	28
	T30	M 4	52	12	32
	T 26	M 3	54	14,5	28
2	T 31	M 3	59	14,5	32

PERFORMANCES

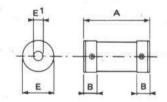
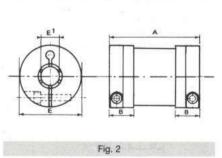
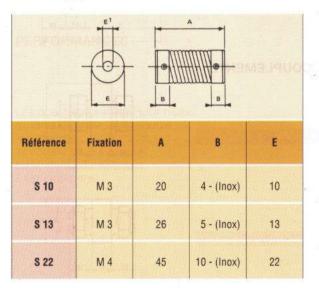
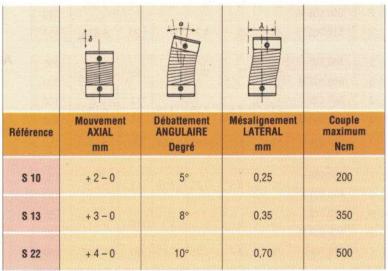




Fig. 1

Accouplements en acier à ressort "SORFLEX"



Le **sorflex** est un accouplement en acier, à ressort. Il compense les distorsions supérieures à la normale et parachève, sans dommage la fin de course d'un moteur pas à pas. (fermeture d'une trappe, d'un clapet, d'un rideau). ACCOUPLEMENT NON HOMOCINETIQUE



E1* Référence 9,53 10 11 12 12,7 13 14 15 16 2 3,17 4,75 6,35 8 9 3 4 5 6 7 S 10 ٠ ٠ . . S 13 ٠ 4 -\$ 22 Standard * E1 > 12,7 → E ≥ 30

DIMENSIONS

PERFORMANCES

Flectors et accouplements

Débattement angulaire	\pm 7° série M : \pm 20°
Jeu	0,5°
Débattement latéral	$\begin{array}{c} \pm \ 0,5^{\circ} \ \text{mm pour } 500.003 - 510.003 - 4 \\ & \text{et } 500.008 - 510.008 - 9 \\ \pm \ 0,75 \ \text{mm pour } 500.009 \\ \pm \ 1,0 \ \text{mm pour } 500.002 \\ & \text{et } 500.010 \\ \pm \ 0,5 \ \text{mm (côté axe)} \\ \pm \ 1,0 \ \text{mm (côté bague)} \end{array} \right\} \ \begin{array}{c} \text{pour} \\ \text{sourd} \\ 500.005 \end{array}$
Durée de vie à + 120°C	100 h pour 500.002 et 500.007 6100 h pour tous les autres types

Fig.	Référence	A	B	B1	B 2	E	E1	Ncm max.
1	500.002	50	28	13	9	25	4 - 6 -	200
1	500.002 M	50	20	10	3	25	6,35	300
1	500.004	40	25	8,5	6,5	17	3-4-	100
1	500.004 M	-10	20	0,0	0,0	15	6-6,35	150
1	510.004*	40,7	25	8,7	7	20	3 - 6 - 6,35	150
2	500.003	40,5	25,0	8,5	7	17	6-6,35	100
2	500.003 M					15	a spectra a	150
2	500.005	29	18	6	5	10	3-3,17	50
2	500.005 M		1000					100
2	510.003*	40,7	25	8,7	7	20	6-6,35	150
3	500.007				and the second sec	1	3-6-	200
3	500.007 M	31	13	9	9	25	6,35 - 8	300
3	500.009	00	0.5	7.05	7.05	17	3 - 4 -	100
3	500.009 M	23	8,5	7,25	7,25	15	6-6,35	150
3	510.009*	23	8,7	7,25	7,25	20	3 - 6 - 6,35	150
		Contractor	and and and					
4	500.008	23	8,5	7,25	7,25	15	6-6.35	. 100
4	500.008 M					and the s		150
4	500.010	16	6	5	5	10	3-3,17	50
4	500.010 M							100

Les autres diamètres ne figurant pas sur les tableaux peuvent être réalisés en exécution spéciale.

7,25 7,25

20

6-6,35

150

8,7

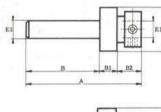
Les accouplements et flectors se composent :

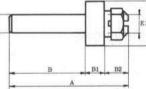
- d'une partie centrale en nylon ou ryton* ou laiton nickelé,
- de deux parties métalliques permettant un débattement angulaire et latéral.

Ils permettent de raccorder, en compensant les inévitables défauts d'alignements, potentiomètres, condensateurs variables, entre eux ou à un autre élément en assurant un parfait isolement entre les parties raccordées (7 kV).

Les parties métalliques peuvent être mâles ou femelles, ces dernières sont soit à serrage par vis, soit à serrage par pinces.

Ces accouplements existent entièrement métalliques (série "M"), la pièce centrale est en laiton nickelé. Ils sont particulièrement conçus pour la transmission de couples plus élevés.


D'une façon générale, lorsque l'on doit transmettre un couple élevé, par exemple plus de 500 Ncm, il est recommandé d'utiliser le serrage par pince, ou bien encore de goupiller directement l'accouplement ou le flector sur l'axe.


Les accouplements de la série 510... (similaires à la série 500...) sont composés d'une partie centrale en ryton* et de deux parties en laiton nickelé.

* RYTON. Trademark of Phillips Petroleum.

Fig. 1

FLECTORS

ACCOUPLEMENTS

Fig. 2

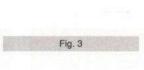
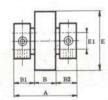
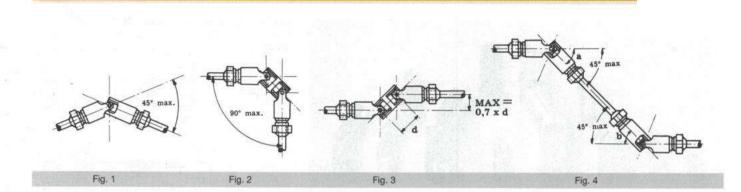



Fig. 4



4

510.008*

23

Joints universels types 210-220-230

JOINTS UNIVERSELS

La gamme des joints type 200 a été créée pour répondre aux besoins de toutes les industries et en particulier ceux de l'électronique, de l'automobile et de l'électro-ménager. Ils sont légers, anti-magnétiques, auto-lubrifiants, isolants, inoxydables et sans jeu.

ACCOUPLEMENT SIMPLE

Ces accouplements ont un débattement angulaire maximal de 45°, (figure 1). Un accouplement simple ne fonctionnera pas correctement si les axes qu'il raccorde ne sont pas alignés latéralement, c'est-à-dire que les lignes centrales des deux axes doivent se croiser au centre de l'accouplement. Un accouplement simple ne peut communiquer un mouvement uniforme. L'axe qui commande accélèrera et retardera deux fois dans chaque révolution par rapport à l'axe qui est commandé. Cette variation cyclique augmente proportionnellement avec l'angle du travail.

ACCOUPLEMENT DOUBLE

L'accouplement double peut transmettre tout mouvement rotatif avec un débattement angulaire allant jusqu'à 90° (figure 2). Il compense aussi les défauts d'alignement latéral comme l'indiaue la figure 3.

Si de plus grands désalignements latéraux doivent être compensés, il faut utiliser deux accouplements simples (figure 4).

TRANSMISSION CONSTANTE DES ANGLES

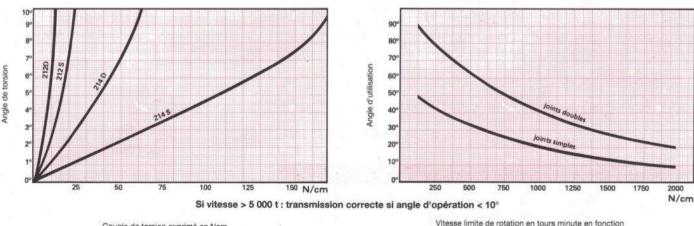
Un accouplement double, ou deux accouplements simples orientés correctement, transmettront automatiquement un mouvement uniforme si les angles (a) et (b) sont égaux, (figure 4). Des rotations au-delà de 5 000 tours peuvent être transmises d'une manière satisfaisante tant que l'angle d'opération demeure inférieur à 10° et que la charge n'est pas trop élevée afin que l'angle maximal de torsion soit respecté. L'angle d'opération, la charge et la vitesse, sont les trois facteurs qui peuvent occasionner l'échauffement de l'accouplement. Un excès de chaleur peut ramollir et déformer la matière thermoplastique et il est important que les données graphiques indiquées ne soient pas dépassées.

DEFORMATION À LA TORSION (figure 5)

Les accouplements thermoplastiques se déforment en fonction du couple. Les courbes indiquent la déformation de chaque accouplement en fonction de la charge appliquée à 20°C.

En fonctionnement continu la déformation angulaire maximale admise est de 3°. En opération manuelle, donc intermittente, une déformation de 7° est admise. Ces données s'appliquent aux accouplements simples. Les accouplements doubles admettent une déformation deux fois plus grande. (Limite d'utilisation 85°).

DÉBATTEMENTS ANGULAIRES ET VITESSES (figure 6)


Les limites indiquées par cette courbe doivent être observées pour éviter des excès de chaleur dans les accouplements en fonctionnement. Les essais ont été faits à sec (sans lubrifiant) avec les accouplements en pleine charge (3° de déformation angulaire). En lubrifiant avec de l'huile silicone, de plus grandes performances sont possibles.

NOTA :

Les joints type 210 se fixent sur les axes par serrage à l'aide d'une pince en laiton nickelé.

Les joints type 220 se fixent sur les axes à l'aide de baques en laiton nickelé. Le goupillage est recommandé pour obtenir une tenue parfaite.

Les joints type 230 se fixent à l'aide de bagues en lation nickelé, qui permettent un serrage par vis.

Couple de torsion exprimé en Ncm

Vitesse limite de rotation en tours minute en fonction de l'angle d'utilisation du joint

Fig. 6

Joints universels types 200 - 210 - 220 - 230

TYPE 200

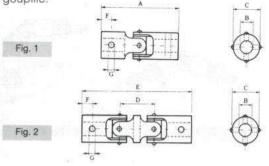
Fig.	Matière	Référence	A	B	C	D	E	F	G
1	Laiton	203 SM 204 SM	28,5 35	4 - 5 6-6,35	10 13			4,5 5,5*	1,5 2,0*
2	Laiton	203 DM 204 DM	Elorno accinui	4 - 5 6-6,35	10 13	13 17	41,5 52,5	4,5 5,5*	1,5 2.0*

* Cotes recommandées

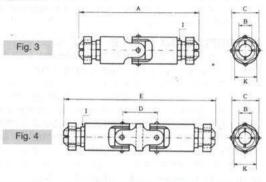
TYPE 210

Fig.	Matière	Référence	A	В	C	D	E	1	K
3	Delrin*	212 S 213 S 214 S	36 50 55	3-3,17 4 - 5 6-6,35	6,3 9,5 13			6 7 9	6 8 10
4	Delrin*	212 D 213 D 214 D		3-3,17 4 - 5 6-6,35	6,3 9,5 13	8 13 16	44 63 71	6 7 9	6 8 10
3	Laiton**	213 SM 214 SM	47 54	4 - 5 6-6,35	10 13			Meplat 8 x 6 10	10 12
4	Laiton**	213 DM 214 DM		4 - 5 6-6,35	10 13	13 17	60 71	Meplat 8 x 6 10	10 12

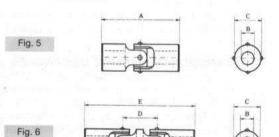
TYPE 220

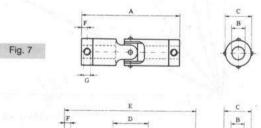

Fig.	Matière	Référence	A	B	C	D	E
5	Delrin*	222 S 223 S 224 S	20 29 36	3-3,17 4 - 5 5-6-6,35	6,3 9,5 13		
6	Delrin*	222 D 223 D 224 D		3-3,17 4 - 5 5-6-6,35	6,3 9,5 13	8 13 16	28 42 51
5	Laiton**	222 SM	20	3-3,17	6,5		
6	Laiton**	222 DM		3-3,17	6,5	8	28

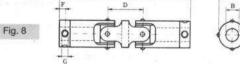
**Fixation sur l'axe à l'aide de 2 vis M 2,5 à 120°


Fig.	Matière	Référence	A	B	C	D	E	F	G
7	Delrin*	233 S 234 S	38 45	4 - 5 6-6,35	9,5 13		- 512975	3 3	M 3 M 3
8	Delrin*	233 D 234 D		4 - 5 6-6,35	9,5 13	13 16	51 60	3 3	M 3 M 3

* DELRIN - Du Pont de Nemours

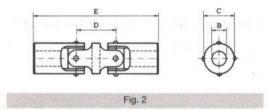

Les joints universels **type 200** se fixent sur les axes à l'aide de goupille.


Les joints universels **type 210** se fixent sur les axes par serrage à l'aide d'une pince en laiton nickelé.



Les joints universels **type 220** se fixent sur les axes à l'aide de bagues en laiton nickelé. Le goupillage est recommandé, pour obtenir une tenue parfaite.

Les joints universels **type 230** se fixent à l'aide de bagues en laiton nickelé, à serrage par vis (120°).


20

TYPE 230

Joints universels types 240 - 250 - 260

Fig. 1

Pinces et croisillons sur coussinets lisses rapportés.

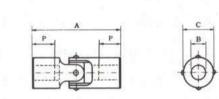
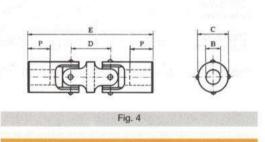



Fig. 3

Pinces et croisillons sur roulements à aiguilles.

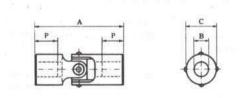
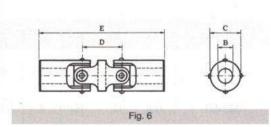
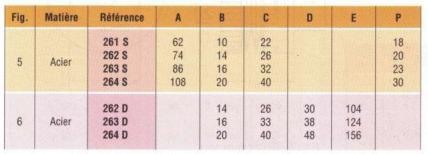



Fig. 5

Fig.	Matière	Référence	A	В	C	D	E
		241 S	42	8	13	Till, Roy	
		242 S	52	10	16		PS-BALL
1	Acier	243 S	62	12	20	世//异主日	
		244 S	74	16	25	11131220165	1
	Mark She	245 S	86	20	32		
	1 States	242 D		10	16	22	7
2	Acier	243 D		12	20	26	8
2	Aciel	244 D		16	25	30	10
		245 D		20	32	37	12

TYPE 250

TYPE 240


Fig.	Matière	Référence	Α	В	C	D	E	P
(Perla	国国际国	251 S	34	6	16			9
30		252 S	40	8	16		STORE	11
111	NESTIMATING ST	253 S	45	10	22		1 10 11	10
3	Acier	254 S	50	12	26	1.10	Sal dire	11
	12 01572	255 S	56	14	29		all and a start and a	13
112		256 S	65	16	32	4.12176	THE LEVEL	15
2.2		257 S	72	18	37	L. Lands		17
	Phones	258 S	82	20	40	A STATE	1000	19
		254 D		12	22	29	74	
	118 383	255 D		14	26	33	85	
4	Acier	256 D		16	29	35	100	
		257 D		18	32	39	112	
-	Same	258 D		20	40	46	127	

TYPE 260

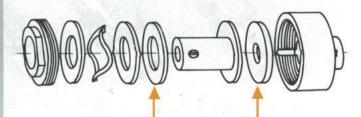
4000 tours / minute

Cémenté - Trempé - Rodé

Norme DIN 7551

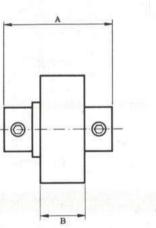
21

Limiteurs de couple



LIMITEURS DE COUPLE METALLIQUES

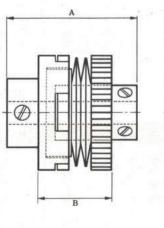
En Aluminium protégé à 10 µ Nickelé kanigen avec écrou inox.

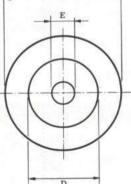

Spécification	Réf. 162 858	Réf. 162 859	Réf. 162 860	Réf. 162 861
А	30 mm	20 mm	30 mm	20 mm
В	11,5 mm	8 mm	11,5 mm	8 mm
C	28 mm	14 mm	28 mm	14 mm
D	12 mm	6 mm	12 mm	6 mm
E	5 - 6 - 6,35	2 - 3 - 3,17	5 - 6 - 6,35	2 - 3 - 3,17
F	16 mm	8 mm	16 mm	8 mm
Coefficient de frottement	0,35	0,35	0,08	0,08
Couple max d'utilisation	40 Ncm	20 Ncm	20 Ncm	10 Ncm
Température	– 50 + 250 °C			

Vue éclatée

Les rondelles des modèles 162 860 et 162 861 sont en Téflon* chargé au bronze.

Les rondelles des modèles 162 858 et 162 859 sont moulées à base de résine synthétique sans additif métallique, ni amiante.




LIMITEURS DE COUPLE EN NYLON A CHARGE DE VERRE

Ces accouplements permettent de régler à volonté les couples transmis, et évitent ainsi de détériorer les butées de potentiomètres.

Moulés en Nylon à charge de verre, ces accouplements peuvent être utilisés dans une gamme de température allant de – 10° C à + 120° C.

Référence	A	B	C	D	E	Ncm max
520 020	33,5	19	30	17,5	6 - 6,35	30
500 021	21,8	11	16	8	3 - 3,17	10

Ċ

* TEFLON - Du Pont de Nemours

Joints oldham - Joints hybrides

Les joints de la série 400 fonctionnent selon le principe OLDHAM.

Ils se composent de trois parties : une noix de transmission de couple et deux plateaux d'entraînement. Ceci permet à l'utilisateur de démonter le dispositif d'entraînement sans déconnecter le joint d'arbre.

MATIERE :

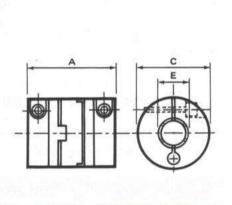
Les plateaux d'entraînement sont en aluminium.

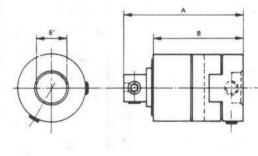
La noix de transmission en matière plastique assure un fonctionnement silencieux et auto-lubrifiant.

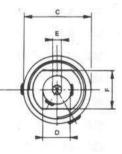
NOTA : Les joints 400 peuvent être livrés avec une noix de transmission métallique et un alésage différent à chaque extrémité.

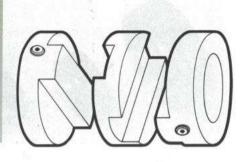
Autres diamètres E sur demande.

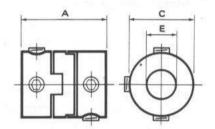
Spécification		Fig	1.1		Fig	. 2	Fig. 1
operneation	Réf. 406	Réf. 409	Réf. 413	Réf. 414	Réf. 415	Réf. 416	Réf. 418
A	13 mm	13 mm	16 mm	28,5 mm	23 mm	31,5 mm	23 mm
C	7 mm	10 mm	14 mm	28 mm	18 mm	28 mm	18 mm
E	2 - 3 3,17	3 - 3,17 4	3 - 4 6 - 6,35	6 - 6,35 8 - 10 - 12	6 - 6,35 8	6 - 6,35 8 - 10 - 12	6 - 6,35 8
max.	1°	1°	1°	1°	1°	1°	1°
max.	0,8 mm	1,2 mm	1,6 mm	4 mm	4 mm	4 mm	4 mm
Couple max. d'utilisation	10 Ncm	23 Ncm	46 Ncm	150 Ncm	200 Ncm	300 Ncm	200 Ncm
Couple max. initial	70 Ncm	70 Ncm	110 Ncm	500 Ncm	500 Ncm	500 Ncm	500 Ncm
Profondeur de perçage du plateau	4 mm	4 mm	5 mm	8 mm	8 mm	10 mm	7 mm




Fig. 2


Fig.


JOINTS HYBRIDES


Spécification	Réf. 184 413	Réf. 184 414
А	26	41,5
В	18,3	30
С	14	28
D	6	12 .
E (limiteur)	2 - 3 - 3,17	5 - 6 - 6,35
E' (oldham)	3 - 4 - 6 - 6,35	6 - 6,35 - 8 - 10 - 12
F	8	16

Ces joints qui se composent d'un **limiteur de couple** et d'un **joint oldham** permettent à la fois de limiter, à la valeur voulue, un couple transmis et de compenser les défauts d'alignement.

Cardans de précision types 600 et 700

Les **cardans de précision** simples et doubles des séries 600 et 700 complètent la gamme des accouplements ACCEL (accouplements SOUFFLEX, TORFLEX, TANFLEX, SORFLEX, joints universels série 200, etc...)

Les cardans de ces séries sont caractérisés par une fabrication de précision et, en particulier, par la suppression de tout jeu entre l'axe meneur et l'axe mené ; ce résultat étant obtenu par un montage particulier avec rattrapage automatique du jeu dans les paliers qui supportent les tourillons des noix du cardan (Brevet n° 7700377).

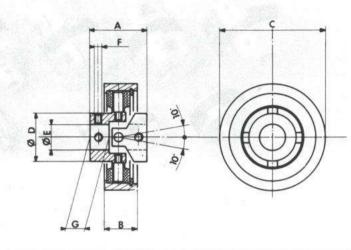
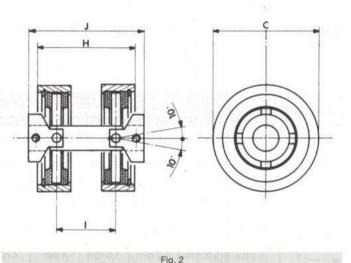
Les caractéristiques des différents cardans sont réunies dans les tableaux ci-dessous.

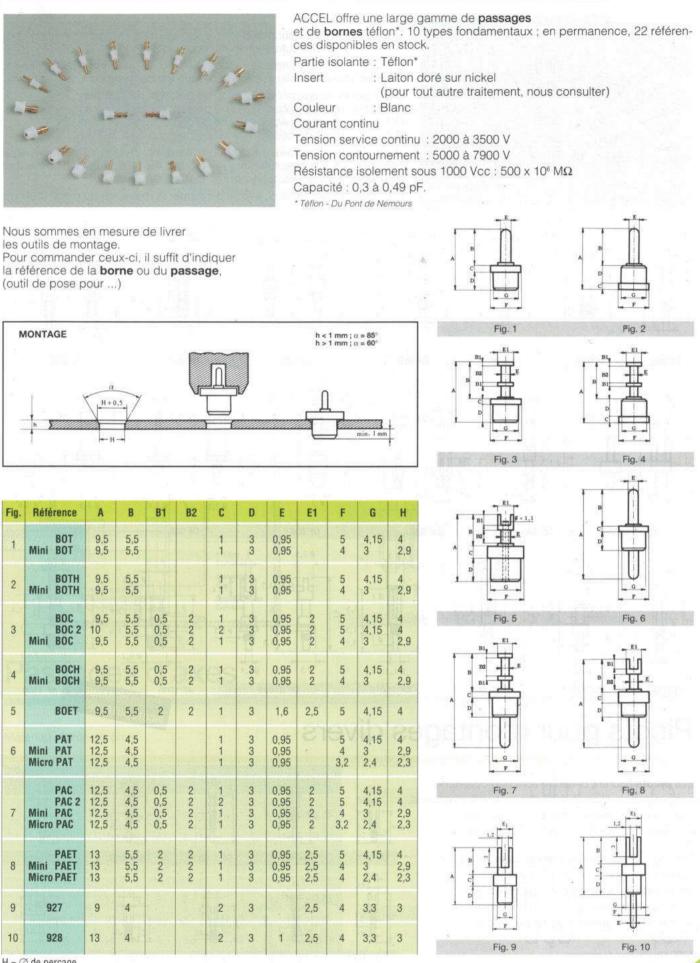
Les cotes A, B, C, D, E, F et G, sont les mêmes pour les cardans de la série 600 et de la série 700.

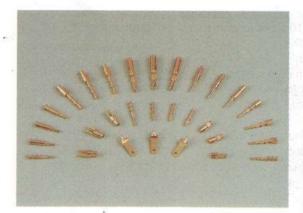
NOTA : Sur demande, dans une même série, on peut prévoir des diamètres différents pour l'arbre meneur et l'arbre mené.

			TYPE	600 - Fig	.1			
Référence	A	B	C	ØD	Ø EH8	F	G	Ncm max
622 Ø 3	19	8	22	12	3	M 2,5	6	30
622 ∅ 3,17	19	8	22	12	3,17	M 2,5	6	30
622 Ø 4	19	8	22	12	4	M 2,5	6	30
622Ø5	19	8	22	12	5	M 3	6	30
622 Ø 6	19	8	22	12	6	M 3	6	30
633Ø6	22	11	33	14	6	M 3	6	100
633 Ø 6,35	22	11	33	14	6,35	M 3	6	100
633 Ø7	22	11	33	14	7	M 3	6	100
633Ø8	22	11	33	14	8	M 3	6	100
653 Ø 10	28	16,5	53	22	10	M 5	9	540
653Ø12	28	16,5	53	22	12	M 5	9	540
653Ø14	28	16,5	53	22	14	M 5	9	540

TYPE 600 (simple)


Fig. 1



	TYPE	700 - Fig.	2	
Référence	H	1	J	Ncm max.
722 Ø 3	38,4	28	47	30
722 Ø 3,17	38,4	28	47	30
722 Ø 4	38,4	28	47	30
722 Ø 5	38,4	28	47	30
722 Ø 6	38,4	28	47	30
733Ø6	44,6	32	54	100
733 Ø 6,35	44,6	32	54	100
733Ø7	44,6	32	54	100
733 Ø 8	44,6	32	54	100
753 Ø 10	59	40	68	540
753 Ø 12	59	40	68	540
753 Ø 14	59	40	68	540

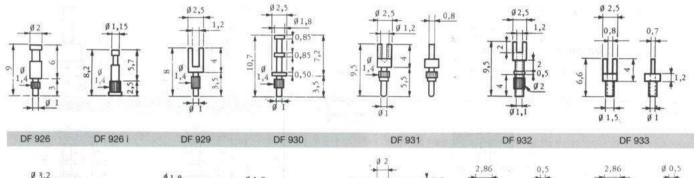
Bornes et passages (ptfe)

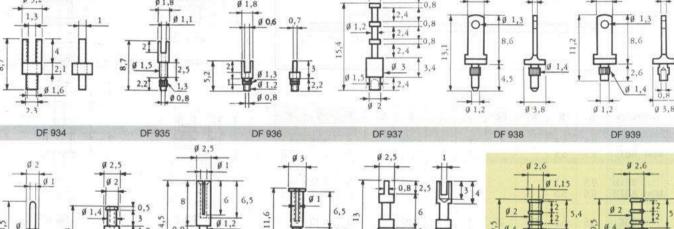
Picots pour circuits imprimés

Matière : laiton doré sur nickel

(pour tout autre traitement, nous consulter).

La partie moletée permet la fixation du picot sur la carte avant soudure. On peut ainsi manipuler la carte sans faire tomber les picots.


02 sur moletage nécessite un Ø de perçage de 1,95 mm


Ø 1,5 sur moletage nécessite un Ø de perçage de 1,45 mm Ø 1,4 sur moletage nécessite un Ø de perçage de 1,36 mm

Ø 1,3 sur moletage nécessite un Ø de perçage de 1,25 mm

Nous sommes en mesure de livrer les outils de montage. En ce qui concerne les picots autoforants AF 1000 et AF 1100, il est indispensable de les monter avec les outils appropriés.

Pour commander ceux-ci, il suffit d'indiquer la référence du picot. (outil de pose pour...).

1,5

Ø1.3

DF 21015

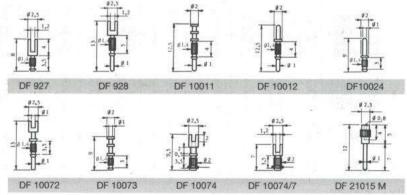
\$3

DF 21016

DF 942

Les picots figurant ci-contre sont particulièrement conçus pour la fixation dans des matières plastiques. comme par exemple celles produites à partir du Téflon* ou de matériaux thermo-plastiques.

4, 1.9


2.6

00,8

DF 941

Matériau : laiton doré sur nickel (pour tout autre traitement, nous consulter). Nous sommes en mesure de livrer les outils de montage. Pour commander ceux-ci, il suffit d'indiquer la référence du picot (outil de pose pour...).

* TEFLON : Du Pont de Nemours

DF 940

Relais tourniquets

*

- Antie) 전성방 1770년(4)

G Fig. 1

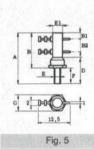
E1

200C

12,5

Fig. 3

G


Les **relais tourniquets** facilitent le raccordement de différents composants entre eux. Ils se fixent soit par vis, soit par écrous sur les platines de montage.

La partie isolante est en Téflon blanc Dupont de Nemours.

Les embases et les broches sont en laiton doré sur nickel.

Tous les relais peuvent être livrés avec des broches fendues ; dans ce cas faire suivre la référence de la lettre F, par exemple : REBOVIC A F.

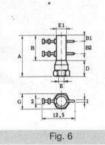
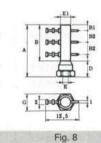
							5.1-4		1.5			
Fig.	Référence	A	B	B1	B2	C	D	E	E1**	F	G	H*
1	REBOVIC A REBOVIC B REBOVIC C	19,5 22,5 25,5	9,5 12,5 15,5	5,5 5,5 5,5		-Insk	10 10 10	M3 M3 M3	4 4 4	4,5 4,5 4,5	6 6 6	3,2 3,2 3,2
2	REBOC A REBOC B REBOC C	15 18 21	9,5 12,5 15,5	5,5 5,5 5,5			5,5 5,5 5,5	M3 M3 M3	4 4 4	1000-10	6 6 6	3,2 3,2 3,2
3	REVIC 1 A REVIC 1 B REVIC 1 C REVIC 1 D	14 17 20 23	9,5 12,5 15,5 18,5	2 2 2 2 2			10 10 10 10	M3 M3 M3 M3	4 4 4 4	4,5 4,5 4,5 4,5	6 6 6	3,2 3,2 3,2 3,2 3,2
4	REC 1 A REC 1 B REC 1 C REC 1 D	9,5 12,5 15,5 18,5	4 7 10 13	2 2 2 2 2			5,5 5,5 5,5 5,5	M3 M3 M3 M3	4 4 4 4		6 6 6	3,2 3,2 3,2 3,2 3,2
5	REVIC 2 A REVIC 2 B	19 24	14,5 19,5	2 2	5 5		10 10	M3 M3	4	4,5 4,5	6 6	3,2 3,2
6	REC 2 A REC 2 B	14,5 19,5	9 14	2 2	5 5	RY	5,5 5,5	M3 M3	4	0	6 6	3,2 3,2
7	REVIC 3	24	19,5	2	5	in the	10	M3	- 4	4,5	6	3,2
8	REC 3	19,5	14	2	5	hind		5,5	M3	4	6	3,2
9	RETOVIC 3	19	14,5	2	5	2,5	10	M3	4	4,5	6	3,2
10	RETOC 3	14,5	9	2	5	2,5	5,5	M3 .	4		6	3,2
11	RETOVIC 5	24	19,5	2	5	2,5	10	M3	4	4,5	6	3,2
12	RETOC 5	19,5	14	2	5	2,5	5,5	M3	4	Santa Santa	6	3,2

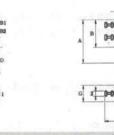
0=0=

2_0=0=0

12,5

Fig. 7


Fig. 2

HH

12.5

Fig. 4

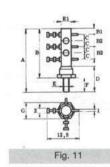
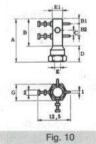
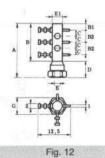
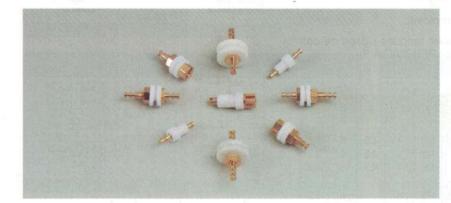




Fig. 9

* H = Ø de perçage

** E1 = 3,96 ou 4

27


Relais tourniquets (suite)

a folgen i Guidela

Référence	A	В	B1	B2	C	D	E	E1**	F	G	H*
RELIX A RELIX 20 A	25 26,5	20,5 20,5	9 9	4 4	1,5 2,2	10 11	M3 M4	4 6,35	4,5 6	6 8	3,2 4,2
4 RELIX AF RELIX 20 AF	20,5	20,5 20,5	9 9	4	1,5 2,2	5,5 5	M3 M4	4 6,35		6	3,2 4,2

* H = Ø de perçage ** E1 = 3,96 ou 4

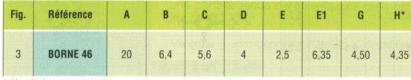
Traversées (ptfe - petp)

Les **traversées** sont conçues pour montage sur châssis métalliques et admettent des intensités supérieures à 10 ampères.

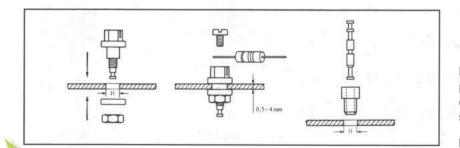
Conducteur : laiton doré sur nickel

Isolant

Fig


Fig. 2

: Téflon blanc Du Pont de Nemours Bocser 1-2-4 et Borne 46 (ptfe) Arnite Bocser 5 (petp)


Fig. 14

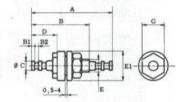
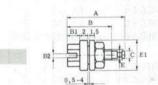
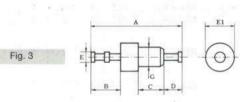
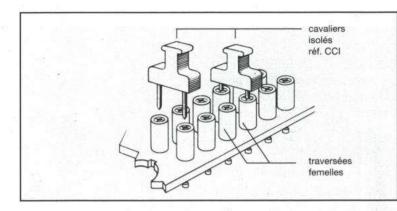

Fig.	Référence	A	В	B1	B 2	C	D	E	E1	G	H*
1	BOCSER 1	26	19	1,5	1,5	3	9	4	10	7	6,2
	BOCSER 2	26	19	1,5	1,5	3	9	4	15	7	8

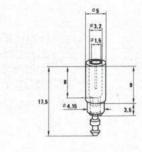
Fig.	Référence	A	В	B1	B2	C	E	E1	G	H*
2	BOCSER 2	19	14,5	4	1,2	3	4	10	7	6,2
2	BOCSER 4	19	14.5	4	1,2	3	4	14	7	6.2





M3x0,50

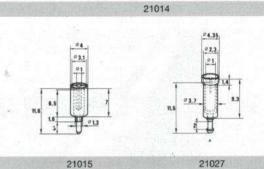




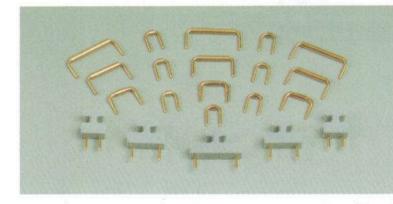
Les **Bocser** se fixent par serrage des deux parties isolantes sur la platine à l'aide d'un écrou spécial qui permet un serrage sur des épaisseurs variant de 0,5 à 4 mm.

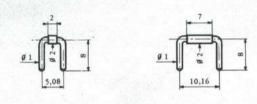
Les Bornes 46 se fixent par simple pression.

Traversées femelles

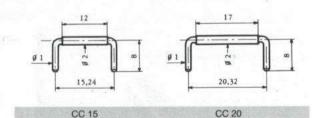


Les traversées femelles miniatures sont conçues pour des applications sur circuits imprimés ou conventionnels.

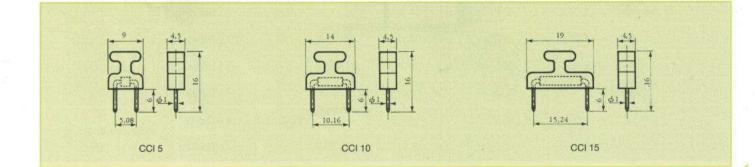

Manchon isolant : Téflon* blanc - noir - rouge Douille : Laiton doré sur nickel

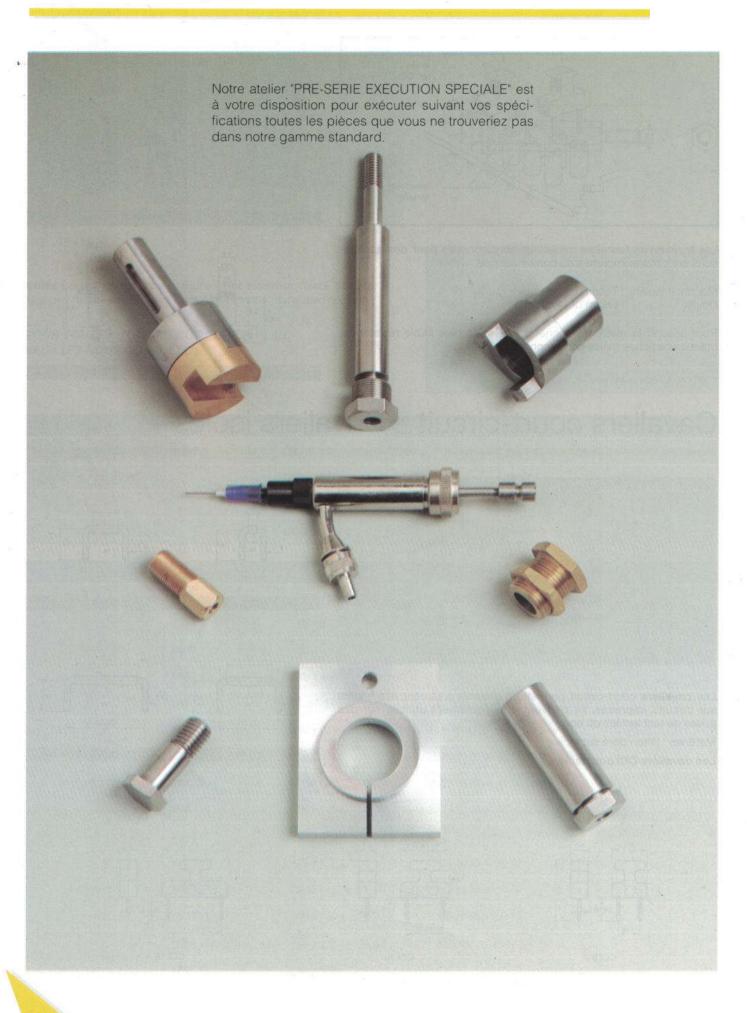

Pour assurer la meilleure connection avec la plus faible résistance, utilisez nos fiches mâles correspondantes.

* TEFLON - Du Pont de Nemours.


Cavaliers court-circuit _ Cavaliers isolés

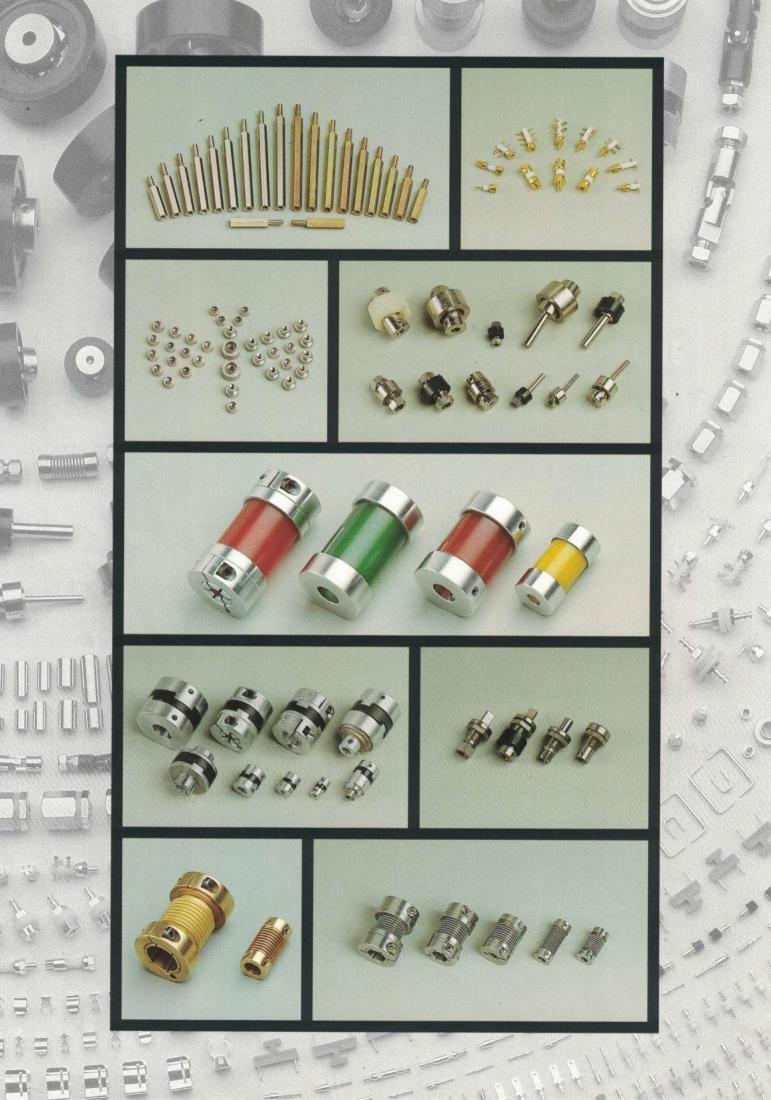
CC 5


CC 10


Les **cavaliers** court-circuit permettent d'établir aisément des shunts sur circuits imprimés. Ils peuvent être également utilisés sur des prises de test isolées ou non.

Matériau : laiton doré sur nickel.

Les cavaliers CCI sont isolés.



Exécutions spéciales

Exécutions spéciales

